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I. INTRODUCTION

Many present day textbooks on classical mechanics, such
as Refs. 1–7, discuss chaotic systems, but only a few discuss
the three-body problem. Exceptions include Refs. 2, 5, and
7, which range from a mere mention of the problem5 to an
entire chapter.2 Moreover, only a few topics on the restricted
three-body problem have been discussed in this journal.8,9

The limited discussions of the problem might be due in part
to the widely perceived difficulty of obtaining solutions,
before the recent deluge of new periodic solutions.10 Soon
after the publication of Ref. 10 we received many e-mails,
showing that, given the initial conditions, it takes little time
and effort to reconstruct these solutions.

Unlike periodic two-body motion, periodic solutions of
Newton’s equations governing the motion of three celestial
bodies around their common center of mass are not known
analytically for arbitrary initial conditions. After Bruns’
work11 in the late 19th century, it has been known that peri-
odic three-body solutions cannot be found analytically, with
one famous exception—the Lagrange-Euler orbits.12,13 Bruns’
result does not imply that periodic orbits do not exist. Finding
periodic orbits constitutes one part of the classical three-body
problem.

With the advent of computers, numerical solutions have
been found that can be classified into two (continuously infi-
nite) families of periodic collisionless three-body solutions:
(1) the Broucke-Hadjidemetriou-Henon family,14–20 and (2)
the Moore-Chenciner-Montgomery-Simo “figure-eight”
family.21–24 These two, together with the much older
Lagrange-Euler family,12,13 form the three families of
solutions known prior to Ref. 10, which recently increased
this number to fifteen. Each of the presently known fifteen
families contains infinitely many different orbits that might,
but need not be stable, depending on their angular momen-
tum and/or their mass ratios. Only two families, the

Lagrange-Euler and the Broucke-Hadjidemetriou-Henon,
have been thoroughly explored with regard to stability, angu-
lar momentum, and mass-ratio dependences.

In this paper, we argue that finding new periodic solutions
is not too difficult and can be done by interested students. We
present instructions on how to set up a periodic orbit “search
engine,” as well as several successful examples of search tac-
tics and strategies for the do-it-yourself periodic orbit hunter.

Our prior work has used only standard upper level under-
graduate and graduate level textbooks and methods that are
freely available. Since then, we have learned of the existence
of more specialized treatises, such as Ref. 25, which might
be helpful to interested readers, but are not indispensable.

The plan of the article is as follows. In Sec. II, we define
the equations of motion to be solved, and discuss numerical
algorithms that can be used to solve them. In Sec. III, we
present a method for searching for periodic orbits. An identi-
fication and classification method for periodic orbits is given
in Sec. IV. We then show several examples of periodic orbits
in Sec. V and discuss initial conditions that are most likely to
yield successful future searches. The Appendix describes a
program that helps to classify orbits.

II. EQUATIONS OF MOTION

The differential equations of motion of three bodies in a
plane described by the position vectors ri ¼ ðxi; yiÞ and
masses mi are

€x1ðtÞ ¼
Gm2½x2ðtÞ � x1ðtÞ�

ðx1ðtÞ � x2ðtÞÞ2 þ ðy1ðtÞ � y2ðtÞÞ2
h i3=2

� Gm3½x1ðtÞ � x3ðtÞ�

ðx1ðtÞ � x3ðtÞÞ2 þ ðy1ðtÞ � y3ðtÞÞ2
h i3=2

; (1)
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€y1ðtÞ ¼
Gm2½y2ðtÞ � y1ðtÞ�

ðx1ðtÞ � x2ðtÞÞ2 þ ðy1ðtÞ � y2ðtÞÞ2
h i3=2

� Gm3½y1ðtÞ � y3ðtÞ�

ðx1ðtÞ � x3ðtÞÞ2 þ ðy1ðtÞ � y3ðtÞÞ2
h i3=2

; (2)

plus another two pairs of equations with 1! 2! 3 and
1! 3! 2. Note that the numerators in Eqs. (1) and (2) go
to zero when ri ! rj; that is, there are singularities in the
equations of motion when any pair of bodies collide.

Equations (1) and (2) need to be solved numerically by
using Runge-Kutta methods or almost any ordinary differen-
tial equation solver. The main restriction on the choice of nu-
merical method stems from the fact that although we are
searching for collisionless orbits and formally need not
worry about “hitting” a singularity, some periodic orbits pass
close to one or more of these singularities, in which case the
numerical error increases. This behavior requires a shorter
time step, but there may be long sections of the orbit that are
far away from singularities where the choice of a longer time
step is justified and would substantially speed up the compu-
tation. Therefore, adaptive time step methods which allow a
variable time step are the best choice for the present prob-
lem. Unfortunately, adaptive time step methods usually ex-
hibit energy drift in contrast to symplectic algorithms.
However, the latter do not allow straightforward implemen-
tation of the adaptive-step feature.26 We have chosen an
adaptive step Runge-Kutta-Fehlberg method,27,28 although
this choice is not obligatory. The adaptivity of the time step
has certain drawbacks in the calculation of orbits with a pre-
defined period, as discussed in Sec. III F.

The value of the gravitational constant G used in the com-
putations and the average mass m ¼ 1

3

P3
i¼1 mi can be

changed by using simple scaling rules, as discussed in Sec.
IV B 1. What cannot be changed by such a rescaling are the
mass ratios m1=m2, m3=m1, and m2=m3. These ratios, to-
gether with the total energy E and the total angular momen-
tum L, are an essential part of the specification of an orbit.
One way to obtain more solutions, which we will consider to
be in the same family of solutions, is to change the value(s)
of L and/or the mass ratios. In all the numerical calculations
we discuss, the masses m1, m2, m3, and the gravitational con-
stant G are set to unity, but we will discuss more general
choices, for readers who wish to extend the calculations to
unequal masses.

To solve for the evolution of the three two-vectors
ðr1ðtÞ; r2ðtÞ; r3ðtÞÞ and their time derivatives ðp1ðtÞ; p2ðtÞ;
p3ðtÞÞ, we need to specify their initial conditions. That is,
we need to know six two-vectors, which we denote by the
12-vector

XðtÞ ¼ r1ðtÞ; r2ðtÞ; r3ðtÞ; p1ðtÞ; p2ðtÞ; p3ðtÞ
� �

(3)

at the initial time t¼ 0.
Absolute periodicity of the solution implies that XðtÞ

returns to its initial value X0 ¼ Xð0Þ at time t¼T, where T
is the period. There is another kind of periodicity, relative
periodicity, in which all relative positions and relative veloc-
ities return to their initial values, but the orientation in the
plane has changed by an overall rotation angle. A solution
with relative periodicity can be made absolutely periodic by
tuning the angular momentum.

III. SEARCH METHOD FOR PERIODIC ORBITS

A. The return proximity function

The return proximity function dðX0; T0Þ in phase space is
defined as the absolute minimum of the distance from the
initial condition by dðX0; T0Þ ¼ mint�T0

jXðtÞ � X0j, where

jXðtÞ�X0j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

i

½riðtÞ� rið0Þ�2þ
X3

i

½piðtÞ�pið0Þ�
2

vuut
(4)

is the distance (Euclidean norm) between two 12-vectors in
phase space (the Cartesian coordinates and velocities of all
three bodies without removing the center-of-mass motion). We
define the return time sðX0; T0Þ as the time for which this mini-
mum is reached.29 Searching for periodic solutions with a pe-
riod T smaller then a parameter T0 is equivalent to finding zeros
of the return proximity function. The initial value of T0 was
taken to be around 100, significantly higher than 6.235, the pe-
riod of the figure-eight solution. The algorithm for finding zeros
of the return proximity function is as follows. For steps (2) and
(3), we used the Runge-Kutta-Fehlberg algorithm,27,28 but any
other adaptive time step integration method can be chosen.

1. Choose an initial condition X0, a maximum period T0,
and the numerical precision �.30

2. Compute the time step Dt so that the calculation error is
less than �.

3. Compute Xiþ1 from Xi by integrating the equations of
motion.

4. Calculate the distance from the initial condition by linear
interpolation:

d ¼
���� X0 � Xið Þ � ðXiþ1 � XiÞ � ðX0 � XiÞ

jXiþ1 � Xij2
ðXiþ1 � XiÞ

����:
(5)

5. Initially d will increase from its value d¼ 0 at t¼ 0. If
and when the value of d decreases, we check to see if the
value of d is minimal, and if yes, we store this value.

6. Repeat steps (2)–(4) while t < T0.

The result of this procedure is the minimum value of d. If
dmin is less than some arbitrary tolerance, we use it as a can-
didate for a periodic solution. This tolerance was 10�4 in our
calculations, but can be tuned to improve the results. Note
that this tolerance is not the final minimum, because we then
apply the gradient descent method, which we will describe
later. The value of the tolerance plays the role of an initial
filter to select candidate regions in phase space.

B. Three-body variables

Because the return proximity function is a function of
twelve variables, it is difficult to systematically vary all twelve
initial conditions to find a periodic solution. Thus, it is advisa-
ble to eliminate all constants of the motion and reduce the
number of variables of the proximity function. We first use
the obvious symmetries of the three-body system such as
translational symmetry to set the total momentum equal to
zero and use rotational invariance. One way to do the latter is
by changing the three-body variables to relative (Jacobi) ones.

We next introduce the relative three-body coordinates and
the shape sphere. We will use the latter for classifying periodic

610 Am. J. Phys., Vol. 82, No. 6, June 2014 Milovan �Suvakov and V. Dmitra�sinović 610



solutions. Because most of these variables remain unchanged
for arbitrary masses, we will discuss the general case here.

The center-of-mass (CM) two-vector RCM is defined for
arbitrary masses as

RCM ¼
m1r1 þ m2r2 þ m3r3X3

i¼1

mi

: (6)

RCM is a constant of the motion if the total linear momentum
P ¼ m1 _r1 þ m2 _r2 þ m3 _r3 equals zero. For this reason, we
can reduce the number of variables in the proximity function
dðX0; T0Þ from twelve to eight.

The graphical representation of the three-body dynamics
is simplified by using the two relative coordinate vectors
introduced by Carl Jacobi36 (see Fig. 1),

q ¼ 1ffiffiffi
2
p ðr1 � r2Þ and k ¼ 1ffiffiffi

6
p ðr1 þ r2 � 2r3Þ; (7)

which are applicable even for unequal masses. We solve Eqs.
(1) and (2) using Cartesian coordinates and then use q and k to
graphically represent the solutions. The mass-weighted Jacobi
vectors are not necessary for solving the equations of motion,
nor do they represent the true geometry of the three-body trajec-
tories. Consequently, they can be avoided altogether.

There are three independent scalar three-body variables:

k2, q2, and q � k. The hyperradius R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ k2

p
character-

izes the overall size of the orbit and removes one of the three
scalar variables. We may relate the three scalar variables to
the unit three-vector n̂ defined by the Cartesian components

n̂ ¼ 2q � k
R2

;
k2 � q2

R2
;
2ðq� kÞ � ez

R2

� �
: (8)

The domain of these three-body variables is a sphere with
unit radius,31,32 as illustrated in Fig. 2. The sphere coordi-
nates depend only on the shape of the triangle formed by the

three bodies, not on R or on its orientation. The equatorial
circle corresponds to collinear three-body configurations
(degenerate triangles). The three points shown in Fig. 2 cor-
respond to two-body collisions, that is, singularities in the
potential. We have constructed an applet33 that allows users
to interactively explore the relation between the shape of the
triangle and its position on the shape-space sphere.

Two angles parametrizing the shape sphere together with the
hyperradius R define the three-dimensional configuration space
of the planar three-body problem. (The total rotation angle can
be reconstructed from the trajectory in this space and the condi-
tion for angular momentum conservation.) Thus the nominal
dimension of phase space is 6 ¼ 3þ 3, with the three general-
ized coordinates describing the configuration space and three
conjugate generalized momenta. Size or energy scaling reduces
the dimension to five. Using the property that “with the excep-
tion of Lagrange’s solution, every solution with zero angular
momentum to the Newtonian three-body problem suffers
syzygies,”34,35 we can always choose a collinear configuration
for the initial conditions, without losing a potential periodic so-
lution. This second constraint further reduces the dimension of
phase space by one, and leaves a four-dimensional space of ini-
tial conditions for periodic orbits.

C. Absolute periodic orbits

We can define the reduced return proximity function in
phase space as the absolute minimum of the distance from the
initial condition by dðY0; T0Þ ¼ mint�T0

jYðtÞ � Y0j, where

jYðtÞ � Y0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½qðtÞ � qð0Þ�2 þ ½kðtÞ � kð0Þ�2 þ ½ _qðtÞ � _qð0Þ�2 þ ½ _kðtÞ � _kð0Þ�2

q
(9)

is the distance between the 8-vector YðtÞ ¼ qðtÞ; kðtÞ;ð _qðtÞ; _kðtÞÞ and Yð0Þ. By using these Jacobi relative vectors and veloc-
ities, we have removed the center-of-mass motion; that is we have used translational symmetry, but the rotational symmetry
remains untreated. The latter can be done as well, but the norm appropriate to that task is no longer Euclidean, and hence we
use it only for searches of relative periodic orbits.

Fig. 1. The two, three-body Jacobi coordinates q; k.

Fig. 2. Figure-eight orbit (solid curve) on the shape-space sphere. Three,

two-body collision points (bold), singularities of the potential, lie on the

equator.
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D. Relative periodic orbits

To eliminate rotational symmetry and thus to search only
for relative periodic orbits, we define the 6-vector,
ZðtÞ ¼ x; y; z; _x; _y; _zð Þ, where

x ¼ 2q � k
R

; y ¼ k2 � q2

R
; z ¼ 2ðq� kÞ � ez

R
(10)

are the shape sphere coordinates multiplied by the hyperradius
R. By using the relative return proximity function,
dðZ0; T0Þ ¼ mint�T0

jZðtÞ � Z0j; in the minimization proce-
dure, we are effectively searching for relative periodic orbits.
The six variables in ZðtÞ are subject to energy conservation,
which reduces its dimension to five, as explained in Sec. III B.
The choice of a collinear configuration (a syzygy) for the ini-
tial configuration, or equivalently a point on the equator of the
shape sphere, forms the second constraint and leaves a four-
dimensional “hunting ground” for periodic orbits.

E. Choice of initial conditions

To make the search of the nonlinear four-dimensional
space more manageable, we next reduce its dimension by a
judicious choice of the initial configuration. A useful tool for
doing this reduction is symmetry. For three equal masses,
the only remaining symmetry is three-body permutation
symmetry—both the kinetic and the potential energies are
symmetric under permutations (see Fig. 3). Therefore, it is
reasonable to choose an initial configuration that respects the
permutation symmetry of the problem: in other words, one
that leads to an orbit that has (at least some part of) the same
symmetry as the Hamiltonian. A quick look at the known
solutions helps to decide how to proceed.

1. The oldest solutions known to us, those due to Lagrange
and Euler,12,13 correspond to single points on the shape
sphere—the north (or south) pole for the Lagrange

solution. For the Euler solution it is the Euler point; that is,
the intersection of the symmetry meridian and the equator
on the shape sphere (see Fig. 3). The Euler point corre-
sponds to a collinear configuration, with one body exactly
in the middle between the other two (see Fig. 4). Thus we
see that the hyper-angular degree of freedom on the shape
sphere is “frozen” in these two orbits and the dynamics is
reduced to hyper-radial motion. That is also the reason why
these two solutions can be solved in closed form.37–39

2. The second oldest family of solutions, due to Broucke-
Hadjidemetriou-Henon,14–20 has trajectories in the form of
symmetrical ovals on the shape sphere. These ovals have two
axes of symmetry: the Euler or symmetry meridian, and the
equator, and are centered on one of the two-body collision
points. Perusal of Refs. 14, 18–20 shows that these authors
used symmetry principles corresponding to our symmetry
argument (although they did not use the shape sphere).

3. The third family contains Moore’s and Simo’s figure-
eight solutions, as well as several of their satellites.21–24

These solutions have a truly global form on the shape
sphere, encircling it twice (see Fig. 2). This family takes
into account the full permutation symmetry, and not just
one of its two-body subgroups. The initial conditions for
both Moore’s and Simo’s figure-eight solutions corre-
spond to one such point—the Euler point.

Thus, perhaps the simplest way of reducing the dimension
of the search space is to take a point on one of the three
transposition lines in Fig. 3, that is, on one of three symme-
try, or Euler meridians on the shape sphere. The most sym-
metric among them is the Euler point itself. The rest of the
initial conditions of Moore’s and Simo’s figure-eight solu-
tions are determined by the condition that the time derivative
of the hyperradius vanishes at the initial time _Rjt¼0 ¼ 0 and
that the angular momentum vanishes. We will continue to
use these two conditions, although they should be relaxed in
the future. This use is not to say that this choice is the only
potentially useful initial shape, but it has been fruitful so far.

In this subspace of the full initial condition phase space,
the three particles’ initial conditions are specified by only
two parameters, the initial velocities _x1ð0Þ and _y1ð0Þ. The
other initial conditions are given by x1ð0Þ ¼ �x2ð0Þ ¼ 1,
x3ð0Þ ¼ 0, y1ð0Þ ¼ y2ð0Þ ¼ y3ð0Þ ¼ 0, _x2ð0Þ ¼ _x1ð0Þ,
_x3ð0Þ ¼ �2 _x1ð0Þ, _y2ð0Þ ¼ _y1ð0Þ, and _y3ð0Þ ¼ �2 _y1ð0Þ.
Therefore this two-dimensional subspace can be parame-
trized with components of the velocity 2-vector ðvx

¼ _x1ð0Þ; vy ¼ _y1ð0ÞÞ (see Fig. 4). Note that only a limited
region of this subspace (the “inside” of the (circular) border
curve between the dark and light regions visible in the
upper-left-hand corner in Fig. 9) corresponds to negative
energies, that is, to bounded motions.

Fig. 3. The equipotential contours for the equal-mass three-body potential

(solid) on the shape sphere, as seen from (infinitely) high above the north or

south poles. The three straight lines (dashed) correspond to three binary per-

mutations, or transpositions, S2 subgroups of the full permutation group S3.

Two rotations by / ¼ 62p=3 about the axis out of the plane of the figure

correspond to two cyclic three-body permutations. Note the symmetry of the

contours under the reflections about the three transposition lines and the two

rotations. Note also the accumulation of contour lines at the two-body colli-

sion points (larger solid circles), and the decrease of the density of contours

at the three Euler points (smaller solid circles) and the north/south pole.

Fig. 4. Initial conditions in the two-dimensional search subspace; symmetric

configuration with parallel velocities.
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F. Direct search for periodic solutions

To look for periodic solutions numerically, we have to dis-
cretize the search window in the two-dimensional subspace
(see Fig. 5) and calculate the return proximity function for
each grid point up to some pre-defined upper limit on the
integration time T0. In the following we discuss an algorithm
for calculating the return proximity function in a window in
the search plane.

1. Choose a search window in the search plane parameterized
by p1 and p2 by fixing the values of p1;min; p1;max; p2;min;
p2;max. Choose the grid size (resolution) N �M.

2. For each grid point ði; jÞ, where 0 � i � N � 1, and
0 � j � M � 1, compute the initial condition X0 using

p1 ¼ p1;min þ i
p1;max � p1;min

N
; (11)

p2 ¼ p2;min þ j
p2;max � p2;min

M
; (12)

X0 ¼ 1; 0;�1; 0; 0; 0; p1; p2; p1; p2;�2p1;�2p2f g:
(13)

For this initial condition compute the return proximity d
using the algorithm described in Sec. III A.

3. The result of this procedure is an N �M matrix of return
proximity function values in the search window.

For each local minimum of the return proximity function
on this grid less than some prescribed tolerance (for exam-
ple, 10�4), we use the simple gradient descent algorithm40 to
find the position of the minimum more accurately.

Of course, we cannot a priori know for certain if we have
missed an orbit within the given period range T0, whose
orbit’s local maximum of the negative logarithm of the return
proximity function �log dðX0; T0Þ is smaller than the pre-
scribed tolerance on a grid for a given resolution. A miss can
be positively determined only after an orbit has been found,
usually by increasing the resolution of the search grid.

In the following, we present a gradient descent algorithm
which more precisely locates the positions of the minima of
the return proximity function in the search plane. The idea of
this algorithm is to successively approach the minimum by
calculating on an ever smaller-scale 5� 5 grid about the can-
didate point.

1. Fix the time of integration T0 and the total number of gra-
dient descent steps Nstep. Choose the initial parameters,
p1;0; p2;0, and the initial gradient descent resolution, dp.

2. For each grid point ði; jÞ, where �2 � i � 2 and
�2 � j � 2, compute the initial condition X0 using the
following:

p1 ¼ p1;0 þ i dp; (14)

p2 ¼ p2;0 þ j dp; (15)

X0 ¼ 1; 0;�1; 0; 0; 0; p1; p2; p1; p2;�2p1;�2p2f g:
(16)

3. For each of these initial conditions calculate the return prox-
imity function using the algorithm described in Sec. III A.

4. If the minimum of these 5� 5 values is not positioned at
the center ði ¼ 0; j ¼ 0Þ, then move p1;0; p2;0 to the new
minimum:

p1;0  p1;0 þ imindp; (17)

p2;0  p2;0 þ jmindp; (18)

where imin and jmin are the coordinates of the minimum in
the 5� 5 matrix.

5. If the minimum of the 5� 5 values is positioned at the
center ði ¼ 0; j ¼ 0Þ, then zoom in to twice the previous
resolution: dp  dp=2.

6. Repeat steps (2)–(5) Nstep times.
7. The result of this procedure is the final position and value

of the minimum d.

We have to decide the level of accuracy for the return prox-
imity function d. We used 10�6, but this value can be
changed, depending on the required numerical precision.

IV. IDENTIFICATION OF PERIODIC ORBITS

After we have found a periodic orbit, we wish to see if it is
new. In the following, we discuss how to identify periodic orbits.

A. Topological identification method

We use the topological identification and classification
method for periodic three-body solutions suggested by
Montgomery.32 A periodic orbit is a closed curve on the shape
sphere. Because we will consider only collisionless periodic
orbits, this curve must not pass through any of the three two-
body collision points (which are singularities in the potential).
Therefore, no such curve can be stretched across any of the
two-body collision points without changing its fundamental
properties. This condition imposes a constraint on the topol-
ogy of such curves. The classification problem of closed
curves on a sphere with three punctures was solved by mathe-
maticians in the early 20th century, and is given by the conju-
gacy classes of the fundamental group, which, in this case, is
the free group on two letters (a,b) as shown in Fig. 6.

This abstract mathematical notation need not concern the
uninitiated because it has a simple geometric interpretation.
The idea amounts to classifying closed curves according to
their topologies in a plane with two punctures: the sphere
can be mapped onto a plane by a stereographic projection
using one of the punctures as the north pole (see Fig. 7). This
procedure effectively removes one selected puncture to infin-
ity in the plane, and leaves two punctures in the plane.

If we denote a clockwise full turn around the right-hand-
side puncture by a, and denote b as the counter-clockwise

Fig. 5. Discretized search window in the two-dimensional subspace ðp1

¼ _x1ð0Þ; p2 ¼ _y1ð0ÞÞ of phase space; dðp1; p2Þ is the return proximity func-

tion calculated at each grid point.
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full turn around the other puncture (see Fig. 6), then every
closed curve in such a plane can be described by a sequence
of letters a and b, and their inverses a�1 ¼ A, and b�1 ¼ B,
which we denote by upper case letters. A specific sequence
of letters, or word, is not the only descriptor of a specific
closed curve (periodic orbit) because there is no preferred
starting point of a periodic orbit, and thus any other word
that can be obtained by a cyclic permutation of the letters in
the original word is an equally good descriptor of such an
orbit. The set of all cyclically permuted words is the afore-
mentioned conjugacy class of a free group element (word).
For example, the conjugacy class of the free group element
aB also contains the word Ba.

Moreover, the time-reversed orbits correspond to physi-
cally identical solutions, but their free group elements and
their conjugacy classes are generally different. So, for exam-
ple, families of orbits described by a and A are equivalent,
but families ab and AB are not because the inverse of ab is
BA, not AB. There is another ambiguity concerning the sim-
plest families of orbits (a and b). As can be seen in Fig. 7 by
applying the stereographic projection of the shape sphere
onto a plane, a simple loop around the third (“infinite”) punc-
ture on the shape sphere corresponds to aB, a loop around
both poles in the plane, but a single loop around any one of
the three punctures on the original shape sphere must be
equivalent to either of the two remaining punctures; conse-
quently, aB is equivalent to a and b.

The reading of the free group words for new orbits can be
done by visually following the orbit and counting the number
of times it circles around one or the other preferred puncture
in the shape sphere. Take, for example the figure-eight
orbit:21,22 its trajectory on the shape sphere, Fig. 2 can be
distorted as in Fig. 8 and is related to the conjugacy class of
the word abAB.10

For illustration purposes, we can make a mechanical
model to help with this counting. The model consists of a

ping-pong or rubber ball, representing the shape-sphere, with
three pins that represent the three collision points on the
equator, and a (closed) rubber band that represents the trajec-
tory. We insert the rubber band around the three pins

Fig. 6. The two elements ða; bÞ of the free group.

Fig. 7. Sketch of the stereographic projection of a sphere onto a plane.

Three, two-body collision points (solid, red online) lie on a meridian (dashed

circle), with one of them being at the north pole (denoted by the letter N).

Fig. 8. Three topologically equivalent views of the figure-eight orbit on the

shape sphere in Mollweide projection, wherein the third pole on the equator

is split into two halves, one of each being displayed at the eastern and the

western “end”: (a) the original orbit, as in Fig. 2; (b) a deformed version,

wherein the orbit is slid over the North and South poles; (c) the final version,

adapted to the reading of the free group element, see Fig. 6.

Fig. 9. The negative logarithm of the return proximity function

�log10 dðX0; T0Þ in the (velocity) search plane.
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according to the found solution, and then stretch it and/or
slide it around until it clings only to two pins. Then we can
read off the free group word from the rubber band tangle
around the two pins.

This counting can be done easily for sufficiently short and
simple orbits, but the method quickly becomes tiresome,
unreliable, and difficult for long words, such as seen in the
lower rows of Table I. For this reason, we have devised a
program, described in the Appendix, which reads the free
group word from the solution by analyzing the sequence of
the equator segments that the trajectory passes in one period.
This program is available at the Orbitopedia website.43

The figure-eight orbit21,22 is related to the conjugacy class
of the word abAB.10 The figure-eight solution can be
described as a slalom; that is, as a motion in a zigzag manner
on the shape sphere between the two-body singularities,
while drifting in the same general direction along the equa-
tor, for example, eastward or westward (see Fig. 2). As a
consequence of parity, the number of full turns (the winding
number) around the shape sphere sufficient to reach the ini-
tial conditions must be even, and the minimal number is two,
as is the case for the choreographic figure-eight orbit,24 as
well as its non-choreographic cousin found by Simo.23

Besides periodic solutions with a simple free group word w,
consisting of the letters a,b,A,B, that is, w ¼ wða;b;A;BÞ,
there are satellite orbits, which are described by free group
words that are integer powers of the original simple word, that
is, wk ¼ wkða;b;A;BÞ, where k is an integer. For example,
there are orbits that track around the shape sphere’s equator
(either westward or eastward) 2k times, while slaloming
between the two-body collision points, before closing the
loop. Such curves, with a winding number 2k, belong to
the conjugacy class of the free group element (abAB)k,
and are called figure-8 (k) satellites. For specific examples
see Sec. V B.

B. Other identification methods

1. Scaling

Two systems of three identical particles with different val-
ues of their overall positions and velocities (hence also with
different energies) have similar solutions if they can be
scaled into each other.41 To check if two periodic solutions
are equivalent up to a scaling of their spatial and temporal
coordinates, we let r! ar. Then by Eqs. (1) and (2), we let
t! a3=2t. Consequently, the velocity scales as v! v=

ffiffiffi
a
p

,
the total energy scales as E! a�1E, and the period T as
T ! a3=2T. Hence, the equivalency consists of rescaling the
solutions described by the same free group word to the same
(total) energy and then checking if their (rescaled) periods
are identical. If the answer is no, the two solutions are clearly
distinct; if the answer is positive, such as in the case of
Moore’s and Simo’s figure-eights, we must use other meth-
ods of distinguishing between them. For example, we may
look at some specific point on the shape sphere, such as the
Euler point, and test if the orbit passes through it. Or, we
may look at the specifics of the hyperradial motion, which
distinguishes between the two orbits, as for the case of the
two figure-eight solutions.

2. How to recognize a choreography?

Choreographic motions, or choreographies for short, are
periodic orbits of few-body systems in which all bodies
move along the same trajectory with an equal time delay.
For three body systems, the masses follow each other with
the time delay T=3, where T is the period. Therefore, when
we observe a choreographic solution delayed by T=3, we see
the same motion as without this delay, but with a cyclic per-
mutation of the three particles.42 This condition for choreo-
graphic motion implies that Xðtþ T=3Þ ¼ P̂XðtÞ, where P̂ is

Table I. Initial conditions and periods for periodic three-body orbits.10 _x1ð0Þ; _y1ð0Þ are the first particle’s initial velocities in the x- and y-directions, respec-

tively, and T is the period. The other two particles’ initial conditions are specified by two parameters as x1ð0Þ ¼ �x2ð0Þ ¼ �1, x3ð0Þ ¼ 0,

y1ð0Þ ¼ y2ð0Þ ¼ y3ð0Þ ¼ 0, _x2ð0Þ ¼ _x1ð0Þ, _x3ð0Þ ¼ �2 _x1ð0Þ, _y2ð0Þ ¼ _y1ð0Þ, _y3ð0Þ ¼ �2 _y1ð0Þ. The gravitational constant G is taken to be G¼ 1 and

m1;2;3 ¼ 1. All solutions have inversion partners (mirror images) in all four quadrants; that is, if _x1ð0Þ; _y1ð0Þ is a solution, so are 6 _x1ð0Þ;6 _y1ð0Þ. Some of

these partners are identical to the originals, others are identical up to time-reversal, and others are related to the originals by a reflection; we consider all of

them to be physically equivalent to the originals. Note that two pairs of initial conditions in the same quadrant (II.C.2a and II.C.2b; and II.C.3a and II.C.3b)

specify only two independent solutions. See the text for explanation.

Class, no. and name _x1ð0Þ _y1ð0Þ T Free group element

I.A.1 butterfly I 0.306892758965492 0.125506782829762 6.23564136316479 ðabÞ2ðABÞ2

I.A.2 butterfly II 0.392955223941802 0.0975792352080344 7.00390738764014 ðabÞ2ðABÞ2

I.A.3 bumblebee 0.184278506469727 0.587188195800781 63.5345412733264 ðb2ðABabÞ2A2ðbaBAÞ2baÞ�
ðB2ðabABÞ2a2ðBAbaÞ2BAÞ

I.B.1 moth I 0.464445237398184 0.396059973403921 14.8939113169584 baðBABÞabðABAÞ
I.B.2 moth II 0.439165939331987 0.452967645644678 28.6702783225658 ðabABÞ2AðbaBAÞ2B
I.B.3 butterfly III 0.405915588857606 0.230163127422333 13.8657626785699 ðabÞ2ðABAÞðbaÞ2ðBABÞ
I.B.4 moth III 0.383443534851074 0.377363693237305 25.8406180475758 ðbabABAÞ2aðabaBABÞ2b
I.B.5 goggles 0.0833000564575194 0.127889282226563 10.4668176954385 ðabÞ2ABBAðbaÞ2BAAB
I.B.6 butterfly IV 0.350112121391296 0.0793394773483276 79.4758748952101 ððabÞ2ðABÞ2Þ6AððbaÞ2ðBAÞ2Þ6B
I.B.7 dragonfly 0.080584285736084 0.588836087036132 21.2709751966648 ðb2ðABabABÞÞða2ðBAbaBAÞÞ
II.B.1 yarn 0.559064247131347 0.349191558837891 55.5017624421301 ðbabABabaBAÞ3

II.C.2a yin-yang I 0.513938054919243 0.304736003875733 17.328369755004 ðabÞ2ðABAÞbaðBABÞ
II.C.2b yin-yang I 0.282698682308198 0.327208786129952 10.9625630756217 ðabÞ2ðABAÞbaðBABÞ
II.C.3a yin-yang II 0.416822143554688 0.330333312988282 55.78982856891 ðabaBABÞ3ðabaBAbabÞðABAbabÞ3ðABÞ2

II.C.3b yin-yang II 0.417342877101898 0.313100116109848 54.2075992141846 ðabaBABÞ3ðabaBAbabÞðABAbabÞ3ðABÞ2
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a cyclic permutation of the three bodies. On the shape sphere
the cyclic permutation P̂ has a simple representation, which
is rotation by 2p=3 around the vertical z-axis. Therefore, the
trajectory on the shape sphere is symmetrical under rotation
by 2p=3. This fact can be used when making a dedicated
search for choreographies. The space of initial conditions
can be chosen as before for non-choreographic orbits, but
one would have to use the condition Xðtþ T=3Þ ¼ P̂XðtÞ as
the “filter” instead of the usual periodicity condition Xðt
þTÞ ¼ XðtÞ in the definition of the choreographic return
proximity function dchoreoðX0; T0Þ.

V. EXAMPLES OF PERIODIC ORBITS

As mentioned in Sec. III E, several periodic orbits have
been published in Refs. 14–21 and Ref. 23. Their initial con-
ditions, real-space and shape-space trajectories can be found
at Ref. 43. We will not discuss these orbits here, except to
mention that Broucke-Hadjidemetriou-Henon family of peri-
odic orbits has recently been extended to include some satel-
lites44 using methods similar to the ones described here. That
fact makes us believe that, with a small extension of the pres-
ent methods, further such satellite solutions can be found and
explored by readers. Instead of dwelling on these solutions,
we will consider more recent solutions.

A. Post-Moore-an orbits

First we summarize the results from Ref. 10. By using
course-grained steps in our scan of the velocity search plane
(the two-dimensional subspace of the full four-dimensional
phase space of initial conditions), we found about 50 differ-
ent regions containing candidates for periodic orbits, with a
return proximity of 10�1 in phase space. We then used the
gradient descent method40 to refine these initial conditions
so that the return proximity became less then <10�6. We
found 15 solutions, 13 of which are distinct, which can be
classified into 12 topologically distinct families, as listed in
Table I. The reduction of the number of independent orbits
occurs because two pairs of initial conditions (yin-yang I and
II) specify only two independent solutions, the respective
members of the pairs are related by a simple rescaling of
space and time, and because two distinct solutions (butterfly
I and II) belong to the same topological class.

Both the return proximity function dðX0; T0Þ and the
return time sðX0; T0Þ were calculated. Only the return prox-
imity function is shown in Fig. 9. For each local minimum of
the return proximity function less then 10�4 (bright dots in
Fig. 9) we used the simple gradient descent method on this
grid to find the position of the minimum (root) more accu-
rately. All minima below 10�6 are listed in Table I and are
labeled in Fig. 9.

B. Satellites of the figure-eight orbit

Subsequent to Ref. 10, �Suvakov24 focused his numerical
search on a smaller window in the same two-dimensional sub-
space around the figure-eight initial conditions: _x1ð0Þ 2
ð0:20; 0:45Þ, _y1ð0Þ 2 ð0:51; 0:56Þ, with all other initial values
remaining the same as in Ref. 10. The equations of motion
were integrated up to time T0 ¼ 100, where the time unit is
fixed by the condition that G ¼ 1 ¼ mi; i ¼ 1; 2; 3, for each
initial condition out of the 125� 1000 possibilities (points on
the grid) within the search window. The minima of the return

proximity function are shown in Fig. 10 and the periodic
orbits are tabulated in Table II. The initial conditions for
Moore’s figure-eight choreography and Simo’s figure-eight
orbit are labeled by F8 and S8, respectively, in Table II. All of
these orbits are slaloms of some power k, that is, their topolo-
gies are kth powers of the figure-eight orbit (formally their
homotopy class is ðabABÞk). Such orbits are sometimes called
satellites of the figure-eight.

C. Satellites of other known orbits: Promising hunting
grounds

Other stable orbits in Table I are likely to have satellites
of their own. Table I reveals that the “yarn” solution, II.B.1,
is the third power of the “moth I” orbit, I.B.1. Consequently,
we expect higher-order satellites of moth I to exist with

Fig. 10. The logarithm of the reciprocal of the return proximity function

�log10 dðX0; T0Þ in the search window around the initial conditions for the

figure-eight solutions in the velocity search plane. The values of the initial

velocity _x1ð0Þ 2 ð0:20; 0:45Þ are on the x-axis and the values of the initial

velocity _y1ð0Þ 2 ð0:51; 0:56Þ are on the y-axis.

Table II. Initial conditions and periods of three-body orbits found by a

detailed search in the vicinity of the figure-8 solutions. Here _x1ð0Þ; _y1ð0Þ are

the first particle’s initial velocities in the x- and y-directions, respectively, T
is the period, and k is the slalom power (that is, ðabABÞk is the homotopy

class of the orbit). We also list Moore’s (M8) and Sim�o’s (S8) figure-eight

orbits, for comparison.

Label _x1ð0Þ _y1ð0Þ T k

M8 0.3471128135672417 0.532726851767674 6.3250 1

S8 0.3393928985595663 0.536191205596924 6.2917 1

NC1 0.2554309326049807 0.516385834327506 35.042 7

NC2 0.4103549868164067 0.551985438720704 57.544 7

O1 0.2034916865234370 0.5181128588867190 32.850 7

O2 0.4568108129224680 0.5403305086130216 64.834 7

O3 0.2022171409759519 0.5311040339355467 53.621 11

O4 0.2712627822083244 0.5132559436920279 55.915 11

O5 0.2300043496704103 0.5323028446350102 71.011 14

O6 0.2108318037109371 0.5174100244140625 80.323 17

O7 0.2132731670875545 0.5165434524230961 80.356 17

O8 0.2138543002929687 0.5198665707397461 81.217 17

O9 0.2193730914764402 0.5177814195442197 81.271 17

O10 0.2272123532714848 0.5200484344272606 82.671 17

O11 0.2199766127929685 0.5234338500976567 82.743 17

O12 0.2266987607727048 0.5246235168190009 83.786 17

O13 0.2686383642458915 0.5227270888731481 88.674 17

O14 0.2605047016601568 0.5311685141601564 89.941 17

O15 0.2899041109619139 0.5226240653076171 91.982 17
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periods that are longer than 100. This neighborhood is per-
haps the most promising for orbit hunting.

Orbits other than moth I may have satellites of their own
whose periods are longer than 100, and/or whose orbits do
not pass through any of the Euler points, which would
explain why they have not yet been found. Each of the 13
recently found orbits should have its neighborhood examined
more carefully than has been done so far. To do so means
increasing T0 and making the grid mesh finer, as was done in
Ref. 24 for the figure-eight solutions.

We have set up a wiki-based web site,43 Orbitopedia, of
three-body orbits, where users can submit newly found orbits
and check if they coincide with some previously known
orbit.

VI. CONCLUDING REMARKS

We have shown how to hunt numerically for new three-
body periodic solutions using readily available computing
resources. A map of known solutions, up to period T ¼ 100
with masses mi ¼ 1; i ¼ 1; 2; 3 and G¼ 1 was shown, to-
gether with a detailed map of a smaller area on this map. An
increasing number of new solutions is expected to appear as
the length of T is extended. Moreover, previously found
orbits (may) have satellites of their own that are worth
seeking.

We hope to have inspired readers to join us in this search
and make a meaningful contribution.
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APPENDIX: THE FREE GROUP WORD READING

ALGORITHM

We have devised a program that “reads” the free group
word from the periodic solution.

The main idea of this algorithm is to determine the
sequence of topologically different syzygies (crossings of
different segments of the equator) by following the trajectory
on the shape sphere and converting that sequence into a free-
group element (word). This conversion is done in two steps:
first, we convert the sequence of syzygies into a sequence of
directed-semi-circles on the shape sphere using Table III,
and illustrated in Fig. 11. We then convert this sequence of
directed-semi-circles into a string of free group elements
(“letters”) using Table IV. A more detailed description
follows.

We assume, for definiteness, that the initial (and therefore
also the final) configuration is the syzygy with the second
body in the middle (segment 2 (Ref. 46) in Fig. 11). If this
assumption is not correct,46 we have to apply an appropriate
renumbering before proceeding further. The algorithm that
determines the free group element for a given solution is as
follows:

1. Initialize a list of sizyges ‘syz with a single element corre-
sponding to the initial configuration: ‘syz ¼ f2g. Here f2g

means that the initial configuration corresponds to the sec-
ond segment on the equator.

2. Integrate the equations of motion for given initial condi-
tions (using the same algorithm as in Sec. III A) and at
each integration time step compute the mixed product
ðq� kÞ � ez of the Jacobi variables q and k and the out-of-
plane unit vector ez. A passing through a collinear config-
uration (crossing of the equator on the shape sphere, or a
syzygy) is detected when this product changes sign. At
each such moment, determine which body is in the middle
and put the middle body’s index (number) into the list
‘syz.

3. After step (2), if the integration time is slightly larger then
the period of the solution, the last element in the list ‘syz

should be 2. If it is not, then append it to the list.
4. Convert the list of syzigies ‘syz to the list of semi-circles
‘hc as follows. Starting from i¼ 1, for each pair of sub-
sequent elements ð‘syz; i; ‘syz; iþ1Þ in the sequence of
syzygies append one or two semi-circle labels (A, B, C,
D, E, F , G, and H) to the list ‘hc according to the rules
in Table III.45

5. Read off the free-group element of the periodic orbit from
the list ‘hc by substituting two-by-two semi-circle letters
according to the rules outlined in Table IV.

We next discuss an example of the implementation of this
algorithm to read the free group element of the orbit with a
single-loop on the shape sphere. Take a look at Fig. 11 and
choose, for definiteness, the loop around the left-hand-side

Table III. Substitution rules for two subsequent entries ð‘syz; i; ‘syz; iþ1Þ in the

sequence of syzygies into a sequence of directed semi-circles

(A;B; C;D; E;F ;G;H). Note the dependence on the parity of the number of

equator crossings.

ð‘syz;i; ‘syz;iþ1Þ odd i even i

(12) F D
(13) FA DG
(21) B H
(23) A G
(31) EB CH
(32) E C

Fig. 11. Illustration of the conversion scheme of a sequence of syzygies

(numbered dots on the equator) into a sequence of directed-semi-circles on

the shape sphere: eight directed semi-circles connecting different segments

of the equator are denoted by the letters A, B, C, D, E, F , G, and H. The

numbers i ¼ f1; 2; 3g on each segment denote the index i of the ith body

that is placed in the middle of the corresponding collinear configuration

(syzygy). We have drawn two dots for each of the two syzygies 1 and 3, for

better visibility.
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pole. This loop corresponds to the sequence f2; 1; 2g of
equator crossings, which according to Table III corresponds
to the sequence of directed semi-circles BD, which, in turn,
corresponds to the free group letter b, according to Table IV.

Problem. Implement the algorithm to read the free group
element of the figure-8 orbit in Fig. 8.
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